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Why look at Diophantine Equations?

Example 1 Alison spends £6.20 on sweets for prizes in a contest. If a large
box of sweets costs 50p and a small box 20p, how many boxes of each size did
she buy?

With her £6.20, Alison could have gone into another shop where the large
box of sweets cost 49p and the small box 21p. What is the maximum she
could have spent on sweets and how many boxes of each size would she have
got for her money?

Solution Left to student - but you can see why we require the answers to
be integers.

The general solution of am+ bn = c.

Theorem 2 If am + bn = c is soluble and (m0, n0) is a solution, then all
solutions are given by(

m0 −
b

gcd (a, b)
t, n0 +

a

gcd (a, b)
t

)
with t ∈ Z.

Proof Write d = gcd (a, b), so d|a and d|b. Thus there exist u, v ∈ Z such
that a = ud and b = vd. Then by Corollary in the notes,

gcd (u, v) = gcd

(
a

d
,
b

d

)
= 1.

Let (m,n) ∈ Z2 be any solution of ax+ by = c. Then we have both of

am0 + bn0 = c,

am+ bn = c.

Subtract to get
a (m0 −m) = b (n− n0) .

Divide through by d to get

u (m0 −m) = v (n− n0) . (1)
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Since the left hand side is a multiple of u we have u|v (n− n0). But gcd (u, v) =
1 so, by Corollary in notes, u| (n− n0). That is, n−n0 = ut, for some t ∈ Z.

Substitute back into (1) to get u (m0 −m) = v (ut), i.e. m0 − m = vt.
Then all solutions must be of the form

(m,n) = (m0 − vt, n0 + ut) =

(
m0 −

b

d
t, n0 +

a

d
t

)
=

(
m0 −

b

gcd (a, b)
t, n0 +

a

gcd (a, b)
t

)
,

for t ∈ Z.

We must, in fact, show that these are solutions of the equation. But, for
any t ∈ Z,

a

(
m0 −

b

gcd (a, b)
t

)
+ b

(
n0 +

a

gcd (a, b)
t

)

= (am0 + bn0) +

(
− ab

gcd (a, b)
t+

ba

gcd (a, b)
t

)
= am0 + bn0 = c,

as required. �

An alternative way to solve some linear congruences.

Example 3 Solve 5x ≡ 6 mod 19.

Solution TRICK We can change any coefficients by adding multiples of 19,
as in

5x ≡ 6 ≡ 6 + 19 ≡ 25 mod 19.

Recall by part ii) of a theorem above, if ab1 ≡ ab2 modm and gcd (a,m) = 1
then we can divide by a to get b1 ≡ b2 modm.

In the present example this means we can divide by 5 to get x ≡ 5 mod 19.
�

Advice, Only look for alternative ways to solve congruences if it doesn’t
take you too long to do. But, if in doubt, use Euclid’s Algorithm to solve
ax ≡ bmodm.
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An example of the use of congruences

Theorem 4 The integer arar−1...a2a1a0 (r ≥ 1) in decimal notation is di-
visible by 11 if, and only if,

ar (−1)r + ar−1 (−1)r−1 + ...+ a2 − a1 + a0,

i.e. the sum of digits with alternating sign, is divisible by 11.

For example, 2592579 is divisible by 11 since 2−5+9−2+5−7+9 = 11,
which is divisible by 11. For an even larger example 91829182917392817193 has
an alternating sum of 66. If you can’t remember your 11 times table you can
repeat the method on 66 which has an alternating sum of 0, divisible by 11.

Proof First note that if

a ≡ bmod 11 and 11|b then 11|a.

So it suffices to prove that

arar−1...a2a1a0 ≡ ar (−1)r + ar−1 (−1)r−1 + ...+ a2 − a1 + a0 mod 11,

for if 11 divides the alternating sum on the right it must divide arar−1...a2a1a0
as required.

Next note that

10 ≡ −1 mod 11 and so 10n ≡ (−1)n mod 11

for all n ≥ 1. Thus

arar−1...a2a1a0 = ar10r + ar−110r−1 + ...+ a2102 + a110 + a0

≡ ar (−1)r + ar−1 (−1)r−1 + ...

...+ a2 (−1)2 + a1 (−1) + a0 mod 11

≡ ar (−1)r + ar−1 (−1)r−1 + ...+ a2 − a1 + a0 mod 11,

as required. �
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Example Is 240 − 1 divisible by 11?

Solution From a calculator 240 − 1 = 1099511627775. Here r = 12 and so
we consider

1− 0 + 9− 9 + 5− 1 + 1− 6 + 2− 7 + 7− 7 + 5 = 0.

This is divisible by 11 as, is thus, 240 − 1. �

Question for students. Find other factors of 240 − 1.

Example Is 235 + 1 divisible by 11?

Solution From a calculator 235 + 1 = 34359738369. Hence r = 10 and so we
consider

3− 4 + 3− 5 + 9− 7 + 3− 8 + 3− 6 + 9 = 0.

This is divisible by 11 as is thus 235 + 1. �

Question for students. Use the method of successive squaring to find 235 mod 11
and thus give an alternative proof of 235 + 1 ≡ 0 mod 11.
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The number of solutions of a congruence.

Theorem 5 The congruence ax ≡ c (modm) is soluble in integers if, and
only if, gcd (a,m) |c. The number of incongruent solutions modulo m is
gcd (a,m).

Proof The ideas for this proof can be found around p.244. But simply,

∃x ∈ Z : ax ≡ c (modm)

⇔ ∃x,w ∈ Z : ax = c+ wm

⇔ ∃x, y ∈ Z : ax+my = c,

having written y for −w. We have seen that such integer solutions exist if,
and only if, gcd (a,m) |c. And we have also seen that if (x0, y0) is a solution
of ax+my = c then all solutions are given by(

x0 +
m

d
t, y0 −

a

d
t
)
,

for t ∈ Z, and where d = gcd (a,m). Two solutions to our original congru-
ence, x0 + (m/d) t1 and x0 + (m/d) t2, are the same, i.e. congruent modulo
m, if and only if

m

d
t1 ≡

m

d
t2 modm.

Writing m = (m/d)× d we get

m

d
t1 ≡

m

d
t2 mod

(m
d
d
)
.

Apply Theorem (i) above and divide through by m/d to obtain t1 ≡ t2 mod d,
i.e. t1 ≡ t2 mod gcd (a,m).

Thus incongruent solutions are obtained by choosing t1 6≡ t2 mod gcd (a,m).
Hence all incongruent solutions are obtained on choosing

t = 0, 1, 2, ..., gcd (a,m)− 1.

�
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More examples of Pairs of congruences

Example 6 Solve

2x ≡ 3 mod 5 and 3x ≡ 4 mod 7.

Solution. First, solve each individual congruence. The easiest way is to find
the inverse of the coefficients of x.

Note that 3 × 2 ≡ 1 mod 5 so, on multiplying both sides by 3, the first
congruence becomes x ≡ 3× 3 ≡ 4 mod 5.

Next, 5 × 3 ≡ 1 mod 7 so, on multiplying both sides by 3, the second
congruence becomes x ≡ 5× 4 ≡ 6 mod 7.

Hence we have the system

x ≡ 4 mod 5 and x ≡ 6 mod 7.

Second, solve the pair of congruences. To combine these congruences we
observe that

x ≡ 4 mod 5⇒ x = 4 + 5m for some m ∈ Z,
x ≡ 6 mod 7⇒ x = 6 + 7n for some n ∈ Z.

Combine as in
4 + 5m = x = 6 + 7n,

which rearranges to
5m− 7n = 2.

All the numbers are small here so simply stare at this to see that (m0, n0) =
(6, 4) is a solution. The general solution follows from

5 (m0 + 7t)− 7 (n0 + 5t) = 1

for all t ∈ Z. Thus the general solution form is 6+7t which can be substituted
into x = 4 + 5m to get

x = 4 + 5 (6 + 7t) = 34 + 35t

for all t ∈ Z. So the solution to our simultaneous pair is x ≡ 34 mod 35. �
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Example 7 Solve

x ≡ 34 mod 35 and 5x ≡ 7 mod 11.

Solution Note that 9× 5 ≡ 1 mod 11 so the second congruence becomes, on
multiplying both sides by 9,

9× 5x ≡ 9× 7 mod 11, i.e. x ≡ 8 mod 11.

Thus we have the system

x ≡ 34 mod 35 and x ≡ 8 mod 11.

Then

x ≡ 34 mod 35⇒ x = 34 + 35m,

x ≡ 8 mod 11⇒ x = 8 + 11n,

for some m,n ∈ Z. Equate to get 34 + 35m = x = 8 + 11n, that is

26 = 11n− 35m. (2)

To solve this apply Euclid’s Algorithm to 35 and 11 :

35 = 3× 11 + 2

11 = 5× 2 + 1.

Reverse the steps to get

1 = 11− 5× 2

= 11− 5× (35− 3× 11)

= 16× 11− 5× 35.

Multiply by 26 to get

26 = 11× 416− 35× 130.

So a solution to (2) is (n0,m0) = (416, 130). The general solution follows
from

26 = 11 (n0 + 35t)− 35 (m0 + 11t)

= 11 (416 + 35t)− 35 (130 + 11t)

for t ∈ Z. The general solution for n, of 416 + 35t can be substituted into

x = 8 + 11n = 8 + 11 (416 + 35t) = 4584 + 385t.

Thus the solution to our simultaneous pair is x ≡ 4584 ≡ 349 mod 385 �
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Another example of a Triplet of Congruences

Example 8 Solve the system

2x ≡ 3 mod 5, 3x ≡ 4 mod 7 and 5x ≡ 7 mod 11.

Solution With 3 or more congruence first solve each congruence separately.
Then, take a pair, solve them to replace by a single congruence. Then take
this new congruence with an unconsidered one from the original system and
solve this pair. Continue.

So, in this example, start by solving

2x ≡ 3 mod 5 and 3x ≡ 4 mod 7.

But this was seen in the first example above, solution x ≡ 34 mod 35. Com-
bine this new congruence with the remaining congruence from the original
system, i.e.

x ≡ 34 mod 35 and 5x ≡ 7 mod 11.

But this was seen in the second example above, solution

x ≡ 349 mod 385.

Check this answer by substituting back in. �

Chinese Remainder Theorem

We have applied a method above to solve a system of congruences with no
assurance (i.e. no proof) that the method will always give a solution. That
is, we do not know what conditions on a system of congruences will ensure
a solution. In the next two theorems we will give conditions under which a
system of congruences has a solution.

Theorem 9 Chinese Remainder Theorem (for two linear congruences)
Let m1 and m2 be coprime integers, and a1, a2 integers. Then the simul-

taneous congruences

x ≡ a1 modm1 and x ≡ a2 modm2

have exactly one solution with 0 ≤ x0 ≤ m1m2 − 1 and the general solution
is x ≡ x0 modm1m2.
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Proof (Not in PJE) Since (m1,m2) = 1 we can find integers b1, b2 satisfying
the congruences

m2b1 ≡ 1 modm1 and m1b2 ≡ 1 modm2.

Set
x∗ = m2b1a1 +m1b2a2.

Then modulo m1 the second term in x∗ vanishes and we have

x∗ ≡ (m2b1) a1 ≡ a1 modm1.

Modulo m2 the first term in x∗ vanishes and we have

x∗ ≡ (m1b2) a2 ≡ a2 modm2.

Thus x∗ is a simultaneous solution.

Of course, this x∗ may not lie between 0 and m1m2 − 1. But if y∗ is
another solution to the system of congruences then x∗ ≡ y∗modm1 and
x∗ ≡ y∗modm2. So both m1 and m2 divide x∗ − y∗. Since gcd (m1,m2) = 1
we must have m1m2 divides x∗ − y∗, and thus y∗ = x∗ + tm1m2 for t ∈ Z.
It is possible to choose one, and only one, t0 ∈ Z with 0 ≤ x∗ + t0m1m2 ≤
m1m2 − 1. So only one simultaneous solution lies between 0 and m1m2 − 1.

�

Note that to apply the Chinese Remainder Theorem we have to ensure that
the congruences are of the form x ≡ amodm, i.e. where the coefficient of x
is 1.

Example 10 Using the Chinese Remainder Theorem solve

x ≡ 16 mod 17 and x ≡ 3 mod 13.

Solution Need to find b1 and b2, solutions of

13b1 ≡ 1 mod 17 and 17b2 ≡ 1 mod 13.

The first congruence can be written as −4b1 ≡ 1 mod 17 for which we
note that −4× 4 = −16 ≡ 1 mod 17 so b1 = 4.

For the second congruence, written as 4b2 ≡ 1 mod 13, note that 4 ×
(−3) = −12 ≡ 1 mod 13. So we take b2 = −3 ≡ 10 mod 13.

9



Appendix week 9

Finally evaluate x∗ as

x∗ = m2b1a1 +m1b2a2

= 13× 4× 16 + 17× 10× 3 = 1342

≡ 16 mod 221.

�

The virtue of the Chinese Remainder Theorem is that it can be general-
ized to systems of any number of linear congruences. The condition under
which the system of congruences x ≡ ai modmi will have a solution if their
moduli mi satisfy gcd (mi,mj) = 1 for all i 6= j. We say that the modulus
are pairwise coprime.

How is pairwise coprime used in the following proof? Note that if
a|c and b|c then ab does not necessarily divide c. For example 6|12 and 4|12
but 24 - 12. Yet coprimeness gives

Lemma 11 If gcd (a, b) = 1, a|c and b|c then ab|c.

Proof a|c and b|c imply c = ak and c = b` for some k, ` ∈ Z. Equate to get
ak = b`. Since a divides the left hand side it divides the right hand side, i.e.
a|b`. Yet gcd (a, b) = 1 so, by an earlier result, a|`. Thus ab|b`, i.e. ab|c as
required. �

To combine a number of coprimality conditions the following is useful.

Lemma 12 If gcd (a,m) = 1 and gcd (b,m) = 1 then gcd (ab,m) = 1.

Proof Recall gcd (a,m) = 1 if, and only if, sa + tm = 1 for some s, t ∈ Z.
Similarly gcd (b,m) = 1 implies kb+ `m = 1 for some k, ` ∈ Z. Multiply the
first equality by kb to get

sakb+ tmkb = kb = 1− `m,

using the second equality. Rearrange as

(sk) ab+ (tkb+ `)m = 1,

i.e. some linear combination of ab and m equals 1. This is simply the
definition that gcd (ab,m) = 1. �

These lemmas can be combined to show that if ai|c for 1 ≤ i ≤ N and
gcd (ai, aj) = 1 for all i 6= j then a1a2...aN |c. Left to student.
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Theorem 13 Chinese Remainder Theorem (for n linear congruences)
Let m1,m2, ...,mn be integers such that gcd (mi,mj) = 1 for all i 6= j, and
a1, a2, ..., an integers. Then the simultaneous congruences

x ≡ a1 modm1,

x ≡ a2 modm2,
...

x ≡ an modmn

have exactly one solution with 0 ≤ x ≤ m1m2...mn − 1.

Proof not given in this appendix, but the idea is to find a solution of the
form

x∗ = `1a1 + `2a2 + `3a3 + · · ·+ `nan.

To satisfy x∗ ≡ ai modmi for each 1 ≤ i ≤ n, it suffices that

`i ≡ 1 modmi and `i ≡ 0 modmj for all j 6= i.

Let M = m1m2...mn, the product of the moduli and, for each 1 ≤ i ≤ n,
define

κi =
M

mi

=
n∏

j=1
j 6=i

mj,

the product of all moduli except for mi. Then

`i ≡ 0 modmj ∀j 6= i ⇒ mj|`i ∀j 6= i ⇒
n∏

j=1
j 6=i

mj

∣∣∣∣∣∣∣∣ `i,
using the fact that the mi are pairwise coprime. Thus κi|`i for all 1 ≤ i ≤ n.
Then we can write `i = κibi for some bi ∈ Z.

To satisfy the first condition `i ≡ 1 modmi we choose bi to satisfy κibi ≡
1 modmi, i.e. to be the inverse of ki modulo mi. (The fact that all the
moduli are co-prime means that gcd (ki,mi) = 1 which ensures the inverses
bi exist). Let

x∗ = κ1b1a1 + κ2b2a2 + κ3b3a3 + · · ·+ κnbnan.

Finally if y∗ is the general solution then y∗ = x∗ +Mt for t ∈ Z. �
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